Piezoactuators are rather expensive devices and should therefore be operated in the most efficient way with regard to stroke, reliability and positioning sensitivity. It is a well known fact, that piezoactuators accept an asymmetric bipolar operation for static or low dynamic (low power) driving conditions.
For example a " +1000 V " actuator accepts 1000 V with positive voltage polarity according the actuators specification. Under this condition, the actuator expands with increasing voltage.

What is going on, when a countervoltage is applied?
Here the piezoactuator accepts up to approx. 20% of the max. voltage rating (-200 V in this case) and the actuator is shrinking. So the adoption of amplifiers to this asymmetric voltage range gives you an
additional stroke of your piezo of $\mathbf{2 0 \%}$

\section*{High precision • Widest stroke

\title{

Piezo amplifiers

Piezo amplifiers SVR 150 V / 500 V / 1000 V

} SVR 150 V / 500 V / 1000 V}}
compared to unipolar $0 \mathrm{~V} / 1000 \mathrm{~V}$ supplies.
Further advantage of this asymmetric bipolar operation is the
increased reliability of your piezo.
Piezoceramic is subject to some deterioration during longest term high voltage operation, when a permanent unipolar high level voltage is applied. By using the asymmetric bipolar operation mode, you can reduce the peak voltage operation and reverse to some extent degradation mechanisms emerging under unipolar operation

An extreme low level position relevant electrical noise for
highest positioning sensitivity of your piezo
is a self-evident feature of modern piezorelated power supplies.
All these features you get now with the SVR amplifiers ... and more!

- individual LC-display for each channel
- individual "Monitor" output for low signal level real time monitoring of amplifier's output
- D/A computer interfaces (serial/parallel) optionally
- feedback position control units optionally

Triple channel amplifiers SVR

